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The general behaviour of  i-~7-t responses is calculated for the nucleation and growth of  thick polycrystal 
films. The model on which the calculations are based is that described in our previous paper [1] on the 
geometry-conserving model. 

1. Introduction 

In Part 1 of  this series we calculated the volume 
transformation for the case of  '2�89 D' nucleation 
and growth of  polycrystal films [1] .  Here we ex- 
tend that result by calculating various i -~- t  re- 
sponses expected in various electrochemical ex- 
periments. Both 'instantaneous' and 'progressive' 
nucleation are considered. 

2. i - t  transient for instantaneous nucleation at 
constant potential 

Previously we showed that the volume transfor- 
mation for instantaneous nucleation was 

VT cop-l/2 [1 - - exp  (-- 0x)] m (1) 

where V T was the (real) transformed volume per 
unit area of  substrate. This equation can be 
written identically as 

q~ -- exp (-- Ox)] a/2: (2) 

where q is the charge passed in creating the layer 
and Ox is given by  

(f' 
0X = a \ j o X d t  , a = constant .(3)  

Here x is the growth rate o f  a crystal in some 
specified linear direction X. At constant potential, 
x = k (a constant) and so 0 x = ak2t  2 . Thus 

q o:p -1/2 [1 - - exp  (--ak2t2)] 3/2. (4) 

Normalizing the time-scales by setting o.k2t 2 = r 2 

we obtain directly 

dq 
i c e - -  

dt 

cc r exp (-- r 2) [1 -- exp (-- r2)] 1/2 . (5) 

This equation therefore gives the form of  the i - t  
response; this is illustrated in Fig. 1. Differentiat- 
ing Equation 5 to get the transient maximum para- 
meters im and t m we have 

im ~ (a/P) i/2 k (6) 

tm ec ( l / i f )  1/2 ( l / k )  (7) 

and the total charge passed in creating a complete 
polycrystal layer is given by 

qTotal cc p-l~2. (8) 

3. q - t  transient for instantaneous nucleation at 
constant current 

As in the above derivation, we again need 
Equation 2 coupled to Equation 3. But in this case 
x is not  constant; we shall assume that x is of  the 
forint 

x = (e rl - e-n) 0 (9) 

where 7/is a reduced potential scale and 0 is a 

The term in parentheses corresponds to the assumption 
that the crystal growth process occurs via ion transfer. 
The kinetic coefficient 0 is introduced to accommodate 
the fact that the number of microscopic sites in the 
crystal at which growth occurs may itself be a function of 
potential. 
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Fig. 1. Current-time transient for 'instantaneous' 
nucleation and growth. 

kinetic coefficient. Since we are considering 
constant-current conditions, it also follows that 

f ,  t 

=Jo idt = it. (10) q 

Calling the total charge expended in producing 
the layer qrota], Equation 10 predicts an 
'extinction time' text given by 

qTotal = i rex ~. (1 l )  

This expression allows us to introduce a normal- 
ized time-scale T where 

T = (t/text) 2/a. (12) 

Substitution of Equations 3, 9 and 12 into 
Equation 2 yields, after a little rearrangement, 

1 [ T 1 
(2sinhr/) ~ (X 

3 - ~  [ In 1 - - T t  

0 3 )  

which is the desired result. At short times, this ex- 
pression simplifies to 

1 1 1 
(2sinhr/)~ ~ 3a 1/2 T t (14) 

which is a falling transient. The limit of Equation 
13 at long times is obtained using l'H6pitals rule 
to give 

x/2 1 1 (15) 
(2sinh~7)~ cc 3--~2 (1 - T) text 

which is a rising transient. Equation 13 is a U- 
shaped function, and the properties of the mini- 
mum of the ~-t  response can be obtained straight- 
forwardly by differentiation of Equation 13. This 
leads to the result that (2sinh~/) ~ has a minimum 
at T = 0.56, i.e. at r = 0.42. It also follows that 
(2sirthr/min) ~ varies as i/qTotal. 

4. i - q - t  response for instantaneous nucleation 
in linear potential scan 

For a f~xed number of nuclei, we can cast 
Equations 2 and 3 in the form 

q = [ 1 - - e x p ( - - a y 2 ) ]  3/2 (16) 

where dy/dt  = x and dx /d t  = z. It turns out that 
the LPS response in this case is not soluble in 
terms of simple functions for the full range of ~ in 
Equation 9, so we consider the two limiting forms 
of  Equation 9 separately. First we deal with 
~/~ 0, in which case, setting ~ = pt gives 

x = (2vt) ~ (17) 

tO+l 
Y = (2P)~ 0-+-1 (18) 

z = O(2v) ~ t ~ (19) 

Differentiation of Equation 16 gives the i - t  

response dq 
i -  

dt 

3 [1 - exp (--aT2)] x/2 2axy  exp (-ocy2). 
2 

(20) 

Usually the maximum parameters, ip and ~p, are 
of interest. These can be obtained by differenti- 
ating Equation 20 and setting di/dt  = 0. Now, 
letting ff = 1 -- exp ( -  aye ) ,  this procedure pro- 
duces the simple result 

3~ -- 1 ~y~ = 1 + zwvP (21) t w) 
and substitution of xp, yp and zp from Equations 
17-19 leads inunediately to 

( ~ _ ~ )  2 0 + 1  
- i ( 22 )  

which proves that ay~ is a constant, independent 
of v. Further substitution, this time of Equation 
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22 back into Equation 20, yields 

ip ~ x ~ p .  

Hence 

and 

(23) 

ip cc pro/(1 +0)] (24) 

~p O: p[l[(l +O)]. (25) 

The other limiting form of Equation 9, in which 
r7 -+ ~,  can be tackled in a similar way. In this case 

X = e T M  (26) 

1 (eOV t _ 1) (27) 
Y = Ou 

z = Oue ~ (28) 

and substitution o f x p , y p  and Zp back into 
Equation 21 shows that 

( ~ - ! ) ~ y ~ = l +  OPyp (29) 
Ovyp + 1. 

The left-hand side of this equation obviously goes 
to 2 as v -+ o% showing that ay~ -+ constant. This 
leads directly to 

and 
i v = 20u (30) 

~p ~ ha (Op). (31) 

5. i - t  transient for progressive nucleation at 
constant potential 

From [1 ] we know that the volume transfor- 
mation for progressive nucleation is of the form 

If0 V T cc Ax(t)(1 - - ST ( t ) )d t [  

x - - exp  - j  
o (32) 

and at constant potential, this takes the form 

q cc A - I / 2  e x p ( _ A k 2 t 3 ) d  

x [1 -- exp ( - - A k 2 t 3 ) ]  3/2 (33) 

where A is the appearance rate of crystals and k 
is the spreading rate of  crystals. Unfortunately we 
cannot get an explicit solution to this equation in 

terms of familiar functions, although it can be 
solved numerically. In the limit o f A k 2 t  3 -+ oo we 
note that 

-1/2  

x [ 1 - - e x p ( - A k 2 t 3 ) ]  3/2 (34) 

and since 

exp ( - - r3 )d r  = P = 0.894 

(35) 
it follows that as t ~ oo 

qT ~ [ A ( A k 2 ) - I / 3 ]  -1/2 

(36) 

It is also of interest to calculate the i - t  transient 
maximum parameters, i m and t m . To do this we 
first expand exp ( - - A k 2 t  3) as a power series, thus 

exp( - -Ak2 t  3) = 1 - - ( A k 2 ) t  3 + - -  

fo t exp ( -  A k 2 t 3 ) d t  

( A k  2 )~ t 6 

2! " '"  

(37) 

(Ak2)2t6 1 = t 1 (Ak2) t3  + . . . .  (38) 
4 7X2!  

Above A k  2 t 3 --= 1 a large number of terms are re- 
quired to make this series converge. But a useful 
result is that f t exp ( -  A k :  t 3) dt -+ t faster than 
exp (-Ak273 -~ 1 as t ~ 0, which suggests that a 
reasonable approximation to Equation 33 is 

q ~ [At] -1/5 [1 - -exp ( - - A k 2 t a ) ]  a/2 (39) 

provided t -~ 0. Thus we can now use this approxi- 
mate formula to investigate the transient maxi- 
mum parameters. Differentiating Equation 39 
twice, and setting d2q/d t  2 = d i /d t  = 0 leads to the 
result that 

3 A k 2 t 3  m 1 +- 7 -a/2 - (40) 
1 - - 7  

where 
1 [ e x p ( - - A k 2 t ~ )  ] 

7 = 2 1 Z e ~ p ~ ) J .  (41) 

Solving the transcendental Equation 41 gives the 
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Fig. 2. Current-time transient for 'progressive' nucleation 
and growth. 

result that 

and hence 

3 A k  2 tam = 3.0 (42) 

t m e~ (Ak2 )  -l/a " (43) 

Differentiation of Equation 39 gives an expression 
for dq/d t  = i, and substitution of Equation 43 
yields 

im = k. (44) 

Combination of Equations 44 and 43 gives 
1 

�9 2 3 (45) l m t  m ~ -~ 

i.e. it is possible to 'deconvolve' A and k using 
the transient maximum parameters. 

As we stated earlier the current-time plot 
corresponding to the derivative of Equation 33 can 
be evaluated numerically. This was achieved and 
the result is shown in Fig. 2. The result is in close 
agreement with experimental data as the model 
requires [2]. 

6. Other i - q - t  responses for progressive nucleation 

Since the potentiostatic i - t  response cannot be 
solved explicitly it follows that other perturbations 
such as linear potential scans and galvanostatic 
steps are also intractable. They could, however, be 
tackled by approximation methods similar to the 
above, or else they could be solved numerically. 

7. Incorporating diffusion into the model 

In the case of the formation of anodic films it is 

interesting to speculate on the effects of diffusion 
from bare electrode surface to the growing nuclei. 
(Normally this will be a fast process and hence will 
not influence the interfacial kinetics.) To properly 
incorporate slow diffusion into the model would 
be a difficult procedure because of the complex 
interactions of the randomly distributed diffusion 
zones. However we can visualize the overall effect 
(in the case of instantaneous nucleation) by con- 
sidering Equation 5. The effect of a slow diffusion 
process would be to reduce the value of k, and 
hence of q, and this in turn would result in a 
'flattening' of the observed i - t  transient as com- 
pared with those calculated in the present theory. 

8. Conclusion 

In [1 ] we calculated the approximate volume 
transformation for the 'geometry-conserving' limit 
of '2�89 D' nucleation and growth. In this latter part 
of the paper we have used this result to calculate 
some general i - ~ - t  responses of experimental 
interest. As it turned out the instantaneous nucle- 
ation cases proved to be more tractable, but an 
approximate treatment of the progressive 
nucleation cases suggested the possibility of 
deconvolvingA and k. 

The present model is restricted by the form of 
the volume transformation assumed at the outset; 
this is a good approximation at short times but 
when applied to a real system will become increas- 
ingly inaccurate as the intercrystal collisions be- 
come highly developed. It follows that, although 
the results obtained at the transient maxima are 
almost certainly correct in their general form, any 
absolute values of constants calculated using the 
theory must be treated with caution. It also 
follows that, at long times in the transient re- 
sponses, large errors are to be expected because 
the volume transformation is wholly inadequate in 
describing the highly developed, and idiosyncratic, 
behaviour of intercrystal collisions in individual 
systems. The only proper resolution of this last 
point appears to be by computer simulation. 
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